The PumpPotential package provide two models called PumpPotential and AvailableWater and their corresponding configurations in order to facilitate the use of the model.
The PumpPotential model estimates the maximum daily water amount a pump can extract.
The AvailableWater model manage a temporary water tank where the irrigation water can be taken from.
The PumpPotential model (using extension class DiscreteTimeDyn
) estimate water flows from daily groundwater height and electricity duration.
To define the dynamic:
List and information about all possible parameters (name, type, ismandatory, description with default value).
See documentation of DiscreteTimeDyn
to get all available extension parameters (for example time_step)
Parameter name | Type | Is mandatory? | Description |
---|---|---|---|
Altitude | double | [] default:100 | soil surface altitude (m above sea level) |
WellDepth | double | [] default:100 | well depth (m below soil surface) |
CoeffA | double | [] default:79.9308 | coefficient A of the PumpFlow equation (m3 of water/m ground depth/h) |
CoeffB | double | [] default:-0.728 | coefficient B of the PumpFlow equation (-) |
CoeffC | double | [] default:1 | coefficient C of the PumpFlow equation (-) |
Sy | double | [] default:0.005 | Specific yield (-) |
GWpixelArea | double | [] default:10000 | surface of the groundwater pixel (m2) |
List and information about all possible input ports (name, type, description with units).
for model using extension discrete-time also include sync info
List and information about all possible output ports (name, type, description with units).
List and information about all possible observation ports (name, type, description with units).
\[WaterTableDepth(t)=\max\left( \begin{array}{@{}ll@{}} 1.0 \\ Altitude - H(t-1) \end{array}\right) \label{eq:WaterTableDepth}\]
\[PumpFlow(t)=\left\{ \begin{array}{@{}ll@{}} 0.0, & \text{if}\ WaterTableDepth(t)>WellDepth \\ \max\left( \begin{array}{@{}ll@{}} 0.0 \\ CoeffA * WaterTableDepth(t)^{CoeffB} \end{array}\right), & \text{otherwise} \end{array}\right. \label{eq:PumpFlow}\]
\[PumpMaxVol(t)=\max\left( \begin{array}{@{}ll@{}} 0 \\ (WellDepth - WaterTableDepth(t)) * Sy * GWpixelArea \end{array}\right) \label{eq:PumpMaxVol}\]
\[AvailableWater(t)=\min\left( \begin{array}{@{}ll@{}} PumpMaxVol(t) \\ \max\left( \begin{array}{@{}ll@{}} 0.0 \\ PumpFlow(t) * PumpingDuration(t) * CoeffC \end{array}\right) \end{array}\right) \label{eq:AvailableWater}\]
The AvailableWater model (using extension class DiscreteTimeDyn
) estimate ….
To define the dynamic:
List and information about all possible parameters (name, type, ismandatory, description with default value).
See documentation of DiscreteTimeDyn
to get all available extension parameters (for example time_step)
Parameter name | Type | Is mandatory? | Description |
---|---|---|---|
n | integer | [] default:1 | maximum number of days for water storage |
List and information about all possible input ports (name, type, description with units).
for model using extension discrete-time also include sync info
List and information about all possible output ports (name, type, description with units).
List and information about all possible observation ports (name, type, description with units).
List and information about all configuration metadata files
A buffer of size n stores the last n values of PumpFlow. When Irrigation(-1) > 0, all values in this buffer are reset to 0.
\(tmp\_CurrentAvailableWater(t) = sum\{buffer\}\) \(tmp\_CurrentAvailableWater = min\{tmp\_CurrentAvailableWater, GWVol(-1)\}\)
\(CurrentAvailableWater(t) = tmp\_CurrentAvailableWater/2.0\)