Package ASCROM for vle-2.0.2

The ASCROM package provide four atomic models called ClimaticWaterDemand, IrrigationDemand, ActualIrrigation, WaterFlows and their corresponding configuration in order to facilitate the use of the models.
These four atomic models are intended to be coupled to simulate the atmosphere/soil/plant system.
This coupled model is intended as an alternative to the Stics model when testing the above and below ground water flows.

References: “Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56” - See documentation http://www.fao.org/3/X0490E/X0490E00.htm#Contents

ASCROM coupled model

ASCROM coupled model

Table of Contents

  1. Package dependencies
  2. Atomic model ClimaticWaterDemand
    1. Configuring a ClimaticWaterDemand Model
      1. Dynamics settings
      2. Parameters settings
      3. Input settings
      4. Output settings
      5. Observation settings
      6. Available configurations
    2. Details
  3. Atomic model WaterFlows
    1. Configuring a WaterFlows Model
      1. Dynamics settings
      2. Parameters settings
      3. Input settings
      4. Output settings
      5. Observation settings
      6. Available configurations
    2. Details
  4. Atomic model IrrigationDemand
    1. Configuring a IrrigationDemand Model
      1. Dynamics settings
      2. Parameters settings
      3. Input settings
      4. Output settings
      5. Observation settings
      6. Available configurations
    2. Details
  5. Atomic model ActualIrrigation
    1. Configuring a ActualIrrigation Model
      1. Dynamics settings
      2. Parameters settings
      3. Input settings
      4. Output settings
      5. Observation settings
      6. Available configurations
    2. Details
  6. Atomic model Yield
    1. Configuring a Yield Model
      1. Dynamics settings
      2. Parameters settings
      3. Input settings
      4. Output settings
      5. Observation settings
      6. Available configurations
    2. Details
  7. Atomic model Pond
    1. Configuring a Pond Model
      1. Dynamics settings
      2. Parameters settings
      3. Input settings
      4. Output settings
      5. Observation settings
      6. Available configurations
    2. Details
  8. Atomic model IrrigationPriority
    1. Configuring a IrrigationPriority Model
      1. Dynamics settings
      2. Parameters settings
      3. Input settings
      4. Output settings
      5. Observation settings
      6. Available configurations
    2. Details
  9. Atomic model FarmIrrigationManager
    1. Configuring a FarmIrrigationManager Model
      1. Dynamics settings
      2. Parameters settings
      3. Input settings
      4. Output settings
      5. Observation settings
      6. Available configurations
    2. Details
  10. Annexe

Package dependencies

List of required external packages (with link to distribution when available).


Atomic model ClimaticWaterDemand

The ClimaticWaterDemand model (using extension class DiscreteTimeDyn) calculates the daily potential evapotranspiration. This calculation is split in two parts: calculation of the potential crop transpiration and calculation of the potential soil evaporation. We use the generic approach based on Kcb (basal crop coefficient) and proposed by FAO method, to estimate the potential transpiration. We calculate a coefficient Ke to estimate the potential evaporation of soil. This model also handles the dynamic of crop growth (growth of roots ).

Configuring a ClimaticWaterDemand Model

Dynamics settings

To define the dynamic:

  • library : ASCROM
  • name : ClimaticWaterDemand

Parameters settings

List and information about all possible parameters (name, type, ismandatory, description with default value).

See documentation of DiscreteTimeDyn to get all available extension parameters (for example time_step)

Parameter name Type Is mandatory? Description              
SoilDepth double [x] soil depth [double] [m]
REW1 double [x] soil surface layer readily evaporable water. Cumulative depth of evaporation (depletion) at the end of stage 1 [mm] see Table 4
REW2 double [x] soil deep layer readily ?? water. Cumulative depth of ?? (depletion) at the end of stage 1 [mm] see Table 4
fw double [x] average fraction of soil surface wetted by irrigation or light rainfalls (i.e rain < Rain_Threshold) [0.01 - 1]. If heavy rainfall, fw=1. See Table Table 4
fw_Rain_Threshold double [x] Rain threshold where fw=1.
Failure_Option int [x] Choose crop failure option {0:none, 1:water, 2:yield, 3:water&yield, 4:water|yield}.
few_parameter double [] (default=1) reference parameter for few computation.
isDrip boolean [] (default=False) Drip option for few computation.

Input settings

List and information about all possible input ports (name, type, description with units).

for model using extension discrete-time also include sync info

  • ET0 : Reference crop evapotranspiration (We recommend to use values calculated by the Penman Monteith equation as it is done in FAO approach) (mm.d-1) (double) (sync)
  • WC_R1 : soil surface layer water content (mm) (double) (nosync)
  • WC_R2 : soil deep layer water content (mm) (double) (nosync)
  • RHmin : daily air minimal relative humidity (%) (double) (sync)
  • u2 : daily wind speed at 2m (m.s-1) (double) (sync)
  • Rain : daily rain (mm.d-1) (double) (sync)
  • Is_Day_Without_Irrigation : detect if day has no irrigation where it should have (bool) (double) (sync)
  • YieldFraction : Yield/Yield_max fraction (-) (double) (nosync)
  • kcb_interp : kcb interpolation (-) (double) (sync)
  • kcini_interp : kcini interpolation (-) (double) (sync)
  • kcmid_interp : kcmid interpolation (-) (double) (sync)
  • h_interp : h interpolation (m) (double) (sync)
  • MaxDepthRoots_interp : MaxDepthRoots interpolation (m) (double) (sync)
  • Rain_Threshold_To_Reset_Days_Without_Water : water threshold for water deficit counter. (mm) (double) (sync)
  • Lethal_Threshold_Days_Without_Water : number of days of water deficit after which the crop is failed. (days) (double) (sync)
  • Lethal_Threshold_YieldFraction : Crop YieldFraction threshold for crop failure. (-) (double) (sync)
  • NoFailurePeriod : Minimum duration since sowing before failure based on yield. (days) (double) (sync)

Output settings

List and information about all possible output ports (name, type, description with units).

  • Kcb : Basal crop coefficient after specific adjustment in climates. Kcb+Ke<1,4. Kcb-Kcmin>= 0,01 (-) (double)
  • h : the mean plant height during the mid or late season stage (m) (double)
  • MaxDepthRoots : Maximum depth of roots (m) (double)
  • kcini : () (double)
  • kcmid : () (double)
  • Ke : Soil evaporation coefficient. Kcb+Ke<1,4 (-) (double)
  • RootDepth : Crop root depth (m) (double)
  • Max_transp : Daily maximal crop transpiration (mm.d-1) (double)
  • Max_evap : Daily maximal soil evaporation from soil surface layer (mm.d-1) (double)
  • PET: Crop evapotranspration under standard conditions using a dual crop coefficient, one for transpiration (Kcb) and one for soil evaporation (Ke). (mm.d-1) (double)
  • Kcmax : Maximum value of Kc following rain or irrigation. Kcmax [1,05 ; 1,3] (-) (double)
  • Kr1 : Soil evaporation reduction coefficient. (-) (double)
  • Kr2 : Soil ?? reduction coefficient. (-) (double)
  • fc : Average soil fraction covered (or shaded) by vegetation [0.01 - 1] - see Table Table 3 (-) (double)
  • few : Exposed and wetted soil fraction (-) (double)
  • Days_Without_Water : number of consecutive days with water deficit (d) (double)
  • Is_Failure_From_WaterSupply : detect if water deficit threshold has been reached for the current crop (bool) (double)
  • Is_Failure_From_YieldFraction : detect if crop YieldFraction threshold has been reached for the current crop (bool) (double)
  • Is_Failure : detect if crop has failed (bool) (double)
  • Failure_counter : total number of failure (int) (double)
  • Days_Since_Sowing : number of days since sowing (int) (double)

Observation settings

List and information about all possible observation ports (name, type, description with units).

Same as Output settings, see above.

Available configurations

List and information about all configuration metadata files

  • ASCROM/ClimaticWaterDemand : set all parameters with default values

Details

State variables equations

Calculation of Kcb

Kcb(t) : Reference value of Kcb (after climatic correction). The calculation is first based on the linear interpolation from a set of pairs (Kc_params). In the FAO approach, the calculation is based on three pairs of values: Kcini, Kcmid, Kcend, provided in Table 1 (Annexe), and average stage durations for each crop, by climate are provided in Table 5 (Annexe).
We then also add a potential failure process based on consecutive days with water deficit (Days_Without_Water) and/or crop yield fraction (YieldFraction).

Kc evolution

Kc evolution

\[ Is\_Failure\_From\_WaterSupply(t) = Is\_Failure\_From\_WaterSupply(t-1) | (Days\_Without\_Water(t-1) \geq Lethal\_Threshold\_Days\_Without\_Water(t)) \label{eq:Is_Failure_From_WaterSupply}\]

\[ Is\_Failure\_From\_YieldFraction(t) = Is\_Failure\_From\_YieldFraction(t-1) | (YieldFraction(t-1) \leq Lethal\_Threshold\_YieldFraction(t) \text{&} Days\_Since\_Sowing(t-1) > NoFailurePeriod(t)) \label{eq:Is_Failure_From_YieldFraction}\]

\[ Is\_Failure(t)=\left\{ \begin{array}{@{}ll@{}} (Kcb\_interp(t)>0) \text{&} Is\_Failure\_From\_WaterSupply(t), & \text{if}\ Failure\_Option=1 \\ (Kcb\_interp(t)>0) \text{&} Is\_Failure\_From\_YieldFraction(t), & \text{else if}\ Failure\_Option=2 \\ (Kcb\_interp(t)>0) \text{&} Is\_Failure\_From\_WaterSupply(t) \text{&} Is\_Failure\_From\_YieldFraction(t), & \text{else if}\ Failure\_Option=3 \\ (Kcb\_interp(t)>0) \text{&} (Is\_Failure\_From\_WaterSupply(t) \text{|} Is\_Failure\_From\_YieldFraction(t)), & \text{else if}\ Failure\_Option=4 \\ False, & \text{otherwise} \\ \end{array}\right. \label{eq:Is_Failure}\]

\[ Failure\_counter(t)=\left\{ \begin{array}{@{}ll@{}} Failure\_counter(t-1) + 1, & \text{if}\ (Is\_Failure(t-1)=0) \text{&} (Is\_Failure(t)=1) \\ Failure\_counter(t-1), & \text{otherwise} \\ \end{array}\right. \label{eq:Failure_counter}\]

\[ Days\_Without\_Water(t)=\left\{ \begin{array}{@{}ll@{}} Days\_Without\_Water(t-1), & \text{if}\ Is\_Failure(t) \\ Days\_Without\_Water = Days\_Without\_Water(t-1) + 1, & \text{else if}\ Is\_Day\_Without\_Water \\ 0, & \text{otherwise} \end{array}\right. \label{eq:Days_Without_Water}\]
with
\(Is\_Day\_Without\_Water = (Kcb\_interp(t)>0) \text{&} ((Rain(t)<Rain\_Threshold\_To\_Reset\_Days\_Without\_Water(t)) \text{&} (Is\_Day\_Without\_Irrigation(t))\)

\[ Kcb(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ Is\_Failure(t) \\ Kcb\_interp(t), & \text{otherwise} \end{array}\right. \label{eq:Kcb}\]

\[ h(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ Is\_Failure(t) \\ h\_interp(t), & \text{otherwise} \end{array}\right. \label{eq:h}\]

\[ MaxDepthRoots(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ Is\_Failure(t) \\ MaxDepthRoots\_interp(t), & \text{otherwise} \end{array}\right. \label{eq:MaxDepthRoots}\]

\[ kcini(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ Is\_Failure(t) \\ kcini\_interp(t), & \text{otherwise} \end{array}\right. \label{eq:kcini}\]

\[ kcmid(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ Is\_Failure(t) \\ kcmid\_interp(t), & \text{otherwise} \end{array}\right. \label{eq:kcmid}\]

\[ Days\_Since\_Sowing(t)=\left\{ \begin{array}{@{}ll@{}} Days\_Since\_Sowing(t-1) + 1, & \text{if}\ kcb(t) > 0 \\ 0, & \text{otherwise} \end{array}\right. \label{eq:Days_Since_Sowing}\]

Calculation of Ke

This requires the prior calculation of different variables or parameters: Kcmax, AWC1, Kr …

Kcmax: represents an upper limit on evaporation and transpiration from the cropped surface. Kcmax ranges from about 1.05 to 1.30
\[ Kcmax(t)=\max\left( \begin{array}{@{}ll@{}} 1.2 + (0.04 * (u2(t) -2) -0.004 * (RHmin(t) -45)) * (h(t)/3)^{0.3} \\ Kcb(t) + 0.05 \end{array}\right) \label{eq:Kcmax }\]

Kr1: Soil evaporation and transpiration reduction coefficient. [dimensionless] [double]
Soil evaporation and transpiration from the exposed soil can be assumed to take place in two stages: an energy limiting stage, and a falling rate stage. During Stage 1, the soil surface remains wet and evaporation and transpiration are predicted to occur at the maximum rate limited only by energy availability at the soil surface and therefore, Kr1=1. As the soil surface dries, the evaporation and transpiration rate decreases below the potential rate, and Kr1 becomes less than one. Kr1 becomes zero when no water is left for evaporation and transpiration in the top soil reservoir.
Graphic showing evolution of Kr
\[ Kr1(t)=\min\left( \begin{array}{@{}ll@{}} 1 \\ \frac{WC\_R1(t-1)}{REW1} \end{array}\right) \label{eq:Kr1}\]

Kr2: Soil transpiration reduction coefficient. [dimensionless] [double]
Soil transpiration from the soil deep reservoir can be assumed to take place in two stages: an energy limiting stage, and a falling rate stage. During Stage 1, the soil remains wet and transpiration is predicted to occur at the maximum rate limited only by energy availability at the soil and therefore, Kr2=1. As the soil surface dries, the transpiration rate decreases below the potential rate, and Kr2 becomes less than one. Kr2 becomes zero when no water is left for transpiration in the soil deep reservoir. \[ Kr2(t)=\min\left( \begin{array}{@{}ll@{}} 1 \\ \frac{WC\_R2(t-1)}{REW2} \end{array}\right) \label{eq:Kr2}\]

1 - fc : average exposed soil fraction not covered (or shaded) by vegetation [0.01 - 1] - see Table Table 3
fc can also be estimated using the relationship.
\[fc(t) = (\frac{Kcb(t) - Kcini(t)}{Kcmax(t) - Kcini(t)})^{1 + 0.5*h} \label{eq:fc}\]
Remark : fc()=0 when kcb()=0

few : Exposed and wetted soil fraction
\[few(t)=\left\{ \begin{array}{@{}ll@{}} \max\left( \begin{array}{@{}ll@{}} 1 - 2/3 * fc(t) \\ 0 \end{array}\right) * fw, & \text{if}\ isDrip \\ \min\left( \begin{array}{@{}ll@{}} \max\left( \begin{array}{@{}ll@{}} 1 - few\_parameter * fc(t) \\ 0 \end{array}\right) \\ fw\_Rain \end{array}\right), & \text{otherwise} \end{array}\right. \label{eq:few}\] with \[fw\_Rain=\left\{ \begin{array}{@{}ll@{}} fw, & \text{if}\ Rain(t) < fw\_Rain\_Threshold \\ 1, & \text{otherwise} \end{array}\right. \]

Ke(t): Soil evaporation coefficient, Ke, describes the evaporation component of ETP. Where the topsoil is wet, following rain or irrigation, Ke is maximal, it only depends of the energy available for the evaporation process. Where the soil surface is dry, Ke is small and even zero when no water remains near the soil surface for evaporation.
\[Ke(t)=\min\left( \begin{array}{@{}ll@{}} Kr1(t) * (Kcmax(t) - Kcb(t)) \\ few(t) * Kcmax(t) \end{array}\right) \label{eq:Ke}\]

RootDepth(t): Depth of roots (m). (0 to MaxDepthRoots)
\[RootDepth(t)=\min\left( \begin{array}{@{}ll@{}} MaxDepthRoots(t) \\ SoilDepth \\ MaxDepthRoots(t) * Kcb(t)/Kcmid(t) \end{array}\right) \label{eq:RootDepth}\]

Max_transp(t) : Maximum transpiration
\[Max\_transp(t) = Kcb(t) * ET0(t) \label{eq:Max_transp}\]

Max_evap(t) : Maximum evaporation
\[Max\_evap(t) = Ke(t) * ET0(t) \label{eq:Max_evap}\]

PET(t): Potential Evapotranspiration
\[PET(t) = Max\_transp(t) + Max\_evap(t) \label{eq:PET}\]


Atomic model WaterFlows

The WaterFlows model (using extension class DiscreteTimeDyn) estimate water flows from climatic and irrigation demands and available pumping water.
The water available for the crop is provided by rain and irrigation (and soil stock).
The soil is splitted into a surface layer (where both soil evaporation and a fraction of the total crop transpiration can occur), and a deep layer where only remaining crop transpiration is possible.
The crop potential transpiration demand is splitted homogeneously among the 2 soil layers according to the RootDepth.
In the case of unsatisfied transpiration demand in the surface layer, the difference is added to the deep layer transpiration demand.

Configuring a WaterFlows Model

Dynamics settings

To define the dynamic:

  • library : ASCROM
  • name : WaterFlows

Parameters settings

List and information about all possible parameters (name, type, ismandatory, description with default value).

See documentation of DiscreteTimeDyn to get all available extension parameters (for example time_step)

Parameter name Type Is mandatory? Description              
CurveNumber double [x] RunOff CurveNumber parameter (??)
Ia_SoilType_param double [x] RunOff Ia parameter (??)
TH1 double [x] soil surface layer thickness (mm)
ThetaFC1 double [x] soil surface layer water content at field capacity (%)
ThetaWP1 double [x] soil surface layer water content wilting point (%)
BD1 double [x] soil surface layer bulk density (-)
TH2 double [x] soil deep layer thickness (mm)
ThetaFC2 double [x] soil deep layer water content at field capacity (%)
ThetaWP2 double [x] soil deep layer water content wilting point (%)
BD2 double [x] soil deep layer bulk density (-)

Input settings

List and information about all possible input ports (name, type, description with units).

for model using extension discrete-time also include sync info

  • Rain : daily rain (mm.d-1) (double) (sync)
  • ActualIrrigation : water supply (mm.d-1) [double] (sync)
  • Max_evap : daily maximal soil evaporation from soil surface layer (mm.d-1) (double) (sync)
  • Max_transp : daily maximal crop transpiration (mm.d-1) (double) (sync)
  • RootDepth : crop root depth (m) (double) (sync)
  • few : Exposed and wetted soil fraction (-) (double) (sync)
  • fc : Average soil fraction covered (or shaded) by vegetation [0.01 - 1] - see Table Table 3 (-) (double) (sync)
  • Kr1 : Soil evaporation reduction coefficient. (-) (double) (sync)
  • Kr2 : Soil ?? reduction coefficient. (-) (double) (sync)

Output settings

List and information about all possible output ports (name, type, description with units).

  • max_trans_R1 : daily maximal crop transpiration from soil surface layer (mm.d-1) (double)
  • max_trans_R2 : daily maximal crop transpiration from soil deep layer (mm.d-1) (double)
  • actual_evap : daily soil surface actual evaporation (mm.d-1) (double)
  • actual_transp_R1 : daily crop actual transpiration from soil surface layer (mm.d-1) (double)
  • actual_transp_R2 : daily crop actual transpiration from soil deep layer (mm.d-1) (double)
  • actual_transp : daily crop actual transpiration (mm.d-1) (double)
  • Irrigation : daily actual irrigation (mm.d-1) (double)
  • RunOff : daily soil surface runoff (mm.d-1) (double)
  • I_R1 : daily soil surface layer infiltration (mm.d-1) (double)
  • I_R2 : daily soil deep layer infiltration (mm.d-1) (double)
  • Drain : daily soil deep layer drainage (mm.d-1) (double)
  • WC_R1 : soil surface layer water content (mm) (double)
  • WC_R2 : soil deep layer water content (mm) (double)
  • WCtmp_R1 : temporary soil surface layer water content (after gravitational infiltrations and before evapotranspiration) (mm) (double)
  • WCtmp_R2 : temporary soil deep layer water content (after gravitational infiltrations and before evapotranspiration) (mm) (double)
  • stress_index : crop water stress index (-) (double)
  • DailyBalanceControl : control for daily water budget checking (should always be 0) (m) (double)

Observation settings

List and information about all possible observation ports (name, type, description with units).

Same as Output settings, see above.

Available configurations

List and information about all configuration metadata files

  • ASCROM/WaterFlows : set all parameters with default values

Details

State variables equations

\[RunOff(t)=\left\{ \begin{array}{@{}ll@{}} \frac{(Rain(t) - Ia)^2}{Rain(t) - Ia - S}, & \text{if}\ Rain(t) > Ia\\ 0, & \text{otherwise} \end{array}\right. \label{eq:RunOff}\]
with
\(S = \frac{25400}{CurveNumber} - 254\)
and
\(Ia = Ia\_SoilType\_param * S\)

\[I\_R1(t)=\max\left( \begin{array}{@{}ll@{}} 0. \\ Rain(t) + ActualIrrigation(t) - RunOff(t) \end{array}\right) \label{eq:I_R1}\]

\[I\_R2(t)=\max\left( \begin{array}{@{}ll@{}} 0. \\ WC\_R1(t-1) + I\_R1(t) - AWC1 \end{array}\right) \label{eq:I_R2}\]
with
\(AWC1 = (ThetaFC1 - ThetaWP1) * BD1 * TH1\)

\[Drain(t)=\max\left( \begin{array}{@{}ll@{}} 0. \\ WC\_R2(t-1) + I\_R2(t) - AWC2 \end{array}\right) \label{eq:Drain}\]
with
\(AWC2 = (ThetaFC2 - ThetaWP2) * BD2 * TH2\)

\[WCtmp\_R1(t) = WC\_R1(t-1) + I\_R1(t) - I\_R2(t) \label{eq:WCtmp_R1}\]

\[WCtmp\_R2(t) = WC\_R2(t-1) + I\_R2(t) - Drain(t) \label{eq:WCtmp_R2}\]

\[max\_trans\_R1(t)=\min\left( \begin{array}{@{}ll@{}} 1. \\ \frac{TH1}{RootDepth(t)*1000} \end{array}\right) * Max\_transp(t) \label{eq:max_trans_R1}\]

\[max\_trans\_R2(t)=\max\left( \begin{array}{@{}ll@{}} 0. \\ \frac{RootDepth(t)*1000 - TH1}{RootDepth(t)*1000} \end{array}\right) * Max\_transp(t) \label{eq:max_trans_R2}\]

\[actual\_evap(t)=\left\{ \begin{array}{@{}ll@{}} Max\_evap(t), & \text{if}\ Max\_evap(t) + max\_trans\_R1(t) \le WCtmp\_R1(t) or Max\_evap(t)<few(t) * WCtmp\_R1(t)\\ few(t) * WCtmp\_R1(t), & \text{otherwise} \end{array}\right. \label{eq:actual_evap}\]

\[actual\_transp\_R1(t)=\left\{ \begin{array}{@{}ll@{}} max\_trans\_R1(t) * Kr1(t), & \text{if}\ Max\_evap(t) + max\_trans\_R1(t) \le WCtmp\_R1(t) \\ fc(t) * \min\left( \begin{array}{@{}ll@{}} max\_trans\_R1(t) * Kr1(t) \\ WCtmp\_R1(t) \end{array}\right), & \text{otherwise} \end{array}\right. \label{eq:actual_transp_R1}\]

\[actual\_transp\_R2(t)= \min\left( \begin{array}{@{}ll@{}} Kr2(t) * (max\_trans\_R1(t) - actual\_transp\_R1(t) + max\_trans\_R2(t)) \\ WCtmp\_R2(t) * fracRoot\_R2 \end{array}\right) \label{eq:actual_transp_R2}\]
with
\[fracRoot\_R2=\max\left( \begin{array}{@{}ll@{}} 0. \\ \frac{RootDepth(t)*1000 - TH1}{TH2} \end{array}\right) \label{eq:fracRoot_R2}\nonumber\]

\[actual\_transp(t) = actual\_transp\_R1(t) + actual\_transp\_R2(t) \label{eq:actual_transp}\]

\[WC\_R1(t)=\min\left( \begin{array}{@{}ll@{}} AWC1 \\ WCtmp\_R1(t) - actual\_transp\_R1(t) - actual\_evap(t) \end{array}\right) \label{eq:WC_R1}\]

\[WC\_R2(t)=\min\left( \begin{array}{@{}ll@{}} AWC2 \\ WCtmp\_R2(t) - actual\_transp\_R2(t) \end{array}\right) \label{eq:WC_R2}\]

\[stress\_index = \frac{actual\_transp(t)}{Max\_transp(t)} \label{eq:stress_index}\]

\[DailyBalanceControl(t) = \Delta WC(t) - Rain(t) - ActualIrrigation(t) + RunOff(t) + Drain(t) + actual\_evap(t) + actual\_transp\_R1(t) + actual\_transp\_R2(t) \label{eq:DailyBalanceControl}\]
with
\(\Delta WC(t) = (WC\_R1(t) + WC\_R2(t)) - (WC\_R1(t-1) + WC\_R2(t-1))\)

De(t) Cumulative depth of evaporation (depletion) from the soil surface layer after a day with “heavy precipitation” [m],

FAO equation : \(De(t) = max(0, De(t-1) -(P(t)-R(t)) - I(t)/fw + Max\_evap(t)/few + AWC1(t) + DPe(t))\) combined with
\(De(t) = AWC1 - WC\_R1(t)\)

\(AWC1 - WC\_R1(t) = max(0, AWC1 - WC\_R1(t-1) -(P(t)-R(t)) - I(t)/fw + Max\_evap(t)/few + AWC1(t) + DPe(t))\)

\(-WC\_R1(t) = max(-AWC1, - WC\_R1(t-1) -(P(t)-R(t)) - I(t)/fw + Max\_evap(t)/few + AWC1(t) + DPe(t))\)

\(WC\_R1(t) = min(AWC1, WC_R1(t-1) + (P(t)-R(t)) + I(t)/fw - Max\_evap(t)/few - AWC1(t) - DPe(t))\) combined with
\(P(t)=Rain(t)\)
\(R(t)=RunOff(t)\)
\(I(t)=Irrigation(t)\)
\(DPe(t)=I\_R2(t)\)

\(WC\_R1(t) = min(AWC1, WC_R1(t-1) + (Rain(t)-RunOff(t)) + Irrigation(t)/fw - Max\_evap(t)/few - AWC1(t) - I\_R2(t))\)

to be compared to WaterFlow eq (combination of above eq for WC_R1, WCtmp_R1, I_R1) :

\[WC\_R1(t)=\min\left( \begin{array}{@{}ll@{}} AWC1 \\ WC\_R1(t-1) + Rain(t) + Irrigation(t) - RunOff(t) - I\_R2(t) - actual\_transp\_R1(t) - actual\_evap(t) \end{array}\right) \label{eq:WC_R1.2}\nonumber\]


Atomic model IrrigationDemand

The IrrigationDemand model (using extension class DiscreteTimeDyn) estimate daily irrigation demand.

Configuring a IrrigationDemand Model

Dynamics settings

To define the dynamic:

  • library : ASCROM
  • name : IrrigationDemand

Parameters settings

List and information about all possible parameters (name, type, ismandatory, description with default value).

See documentation of DiscreteTimeDyn to get all available extension parameters (for example time_step)

Parameter name Type Is mandatory? Description              
Rule_Strat string [x] strategy option for irrigation rule (choose from {None, Rain_Threshold, SoilWaterContent_Threshold, CropWaterStress_Threshold})

Input settings

List and information about all possible input ports (name, type, description with units).

for model using extension discrete-time also include sync info

  • Rain7days : cummulated rain over the last 7 days (mm.d-1) (double) (sync)
  • Irrigation7days : cummulated irrigation over the last 7 days (mm.d-1) (double) (nosync)
  • CropWaterStress : crop water stress index (-) (double) (nosync)
  • SoilWaterContent : soil water content (mm) (double) (nosync)
  • Is_Failure : detect if water deficit threshold has been reached for the current crop (bool) (double) (nosync)
  • IrrigationDose_interp : IrrigationDose interpolation (mm.d-1) (double) (sync)
  • Rain_Threshold_interp : Rain_Threshold interpolation (mm) (double) (sync)
  • SoilWaterContent_Threshold_interp : SoilWaterContent_Threshold interpolation (mm) (double) (sync)
  • CropWaterStress_Threshold_interp : CropWaterStress_Threshold interpolation (-) (double) (sync)

Output settings

List and information about all possible output ports (name, type, description with units).

  • IrrigationDemand : daily irrigation demand of the 1st subplot (mm.d-1) (double)
  • IrrigationDose : irrigation amount to be applied (mm.d-1) (double)
  • Rain_Threshold : Rain amount threshold for Rule_Strat=Rain_Threshold (mm) (double)
  • CropWaterStress_Threshold : Crop water stress threshold for Rule_Strat=CropWaterStress_Threshold (-) (double)
  • SoilWaterContent_Threshold : Soil water content threshold for Rule_Strat=SoilWaterContent_Threshold (mm) (double)

Observation settings

List and information about all possible observation ports (name, type, description with units).

Same as Output settings, see above.

Available configurations

List and information about all configuration metadata files

  • ASCROM/IrrigationDemand : set all parameters with default values

Details

State variables equations

By setting the value of parameter Rule_Strat the user is choosing one of the following irrigation strategy:

  • None: No particular restriction, irrigation happens ASAP
  • Rain_Threshold: Irrigation event start restricted by Rain7days and Irrigation7days daily inputs and using Rain_Threshold_params parameters
  • SoilWaterContent_Threshold: Irrigation event start restricted by SoilWaterContent daily inputs and using SoilWaterContent_Threshold_params parameters
  • CropWaterStress_Threshold Irrigation event start restricted by CropWaterStress daily inputs and using CropWaterStress_Threshold_params parameters

\[ IrrigationDose(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ Is\_Failure(t) \\ IrrigationDose\_interp(t), & \text{otherwise} \end{array}\right. \label{eq:IrrigationDose}\]

Depending on the Rule_Strat option choosed, a criterion might be used to decide if a new irrigation event should start. (see below the different options).

\[Irrigation\_Demand(t) = IrrigationDose(t) \label{eq:Irrigation_Demand}\]

Rule_Strat=Rain_Threshold

The cummulated rain over the last 7 days is compared to a threshold value

\[ Rain\_Threshold(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ Is\_Failure(t) \\ Rain\_Threshold\_interp(t), & \text{otherwise} \end{array}\right. \label{eq:Rain_Threshold}\]

\[ start\_rule=(Rain7days(t) + Irrigation7days(t-1) < Rain\_Threshold(t)) \label{eq:start_Rain_Threshold}\]

Rule_Strat=SoilWaterContent_Threshold

The soil water content is compared to a threshold value

\[ SoilWaterContent\_Threshold(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ Is\_Failure(t) \\ SoilWaterContent\_Threshold\_interp(t), & \text{otherwise} \end{array}\right. \label{eq:SoilWaterContent_Threshold}\]

\[ start\_rule=(SoilWaterContent(t-1) < SoilWaterContent\_Threshold(t)) \label{eq:start_SoilWaterContent_Threshold}\]

Rule_Strat=CropWaterStress_Threshold

The crop water stress index is compared to a threshold value (Remark : for the crop water stress index defined in the WaterFlows model 0 is max stress and 1 no stress)

\[ CropWaterStress\_Threshold(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ Is\_Failure(t) \\ CropWaterStress\_Threshold\_interp(t), & \text{otherwise} \end{array}\right. \label{eq:CropWaterStress_Threshold}\]

\[ start\_rule=(CropWaterStress(t-1) < CropWaterStress\_Threshold(t)) \label{eq:start_CropWaterStress_Threshold}\]


Atomic model ActualIrrigation

The ActualIrrigation model (using extension class DiscreteTimeDyn) estimate ….

Configuring a ActualIrrigation Model

Dynamics settings

To define the dynamic:

  • library : ASCROM
  • name : ActualIrrigation

Parameters settings

List and information about all possible parameters (name, type, ismandatory, description with default value).

See documentation of DiscreteTimeDyn to get all available extension parameters (for example time_step)

Parameter name Type Is mandatory? Description              
Irrig_Efficiency double [x] fraction of irrigation water reaching soil surface.

Input settings

List and information about all possible input ports (name, type, description with units).

for model using extension discrete-time also include sync info

  • Irrigation : daily irrigation applied (mm.d-1) (double) (sync)

Output settings

List and information about all possible output ports (name, type, description with units).

  • ActualIrrigation : water supply (mm.d-1) [double]

Observation settings

List and information about all possible observation ports (name, type, description with units).

Same as Output settings, see above.

Available configurations

List and information about all configuration metadata files

  • ASCROM/ActualIrrigation : set all parameters with default values

Details

State variables equations

\[ActualIrrigation(t)= Irrigation(t) * Irrig\_Efficiency \label{eq:ActualIrrigation}\]


Atomic model Yield

The Yield model (using extension class DiscreteTimeDyn) estimate ….

Configuring a Yield Model

Dynamics settings

To define the dynamic:

  • library : ASCROM
  • name : Yield

Parameters settings

List and information about all possible parameters (name, type, ismandatory, description with default value).

See documentation of DiscreteTimeDyn to get all available extension parameters (for example time_step)

Parameter name Type Is mandatory? Description              

Input settings

List and information about all possible input ports (name, type, description with units).

for model using extension discrete-time also include sync info

  • CropWaterStress : crop water stress index (-) (double) (sync)
  • Is_Failure : detect if crop has failed (bool) (double) (sync)
  • YieldMax : ?? (??) (double) (sync)
  • Ky : Yield response factor (-) (double) (sync)

Output settings

List and information about all possible output ports (name, type, description with units).

  • StressReductionFactor : ?? (??) [double]
  • Yield : ?? (??) [double]
  • YieldFraction : ?? (??) [double]

Observation settings

List and information about all possible observation ports (name, type, description with units).

Same as Output settings, see above.

Available configurations

List and information about all configuration metadata files

  • ASCROM/Yield : set all parameters with default values

Details

State variables equations

\[StressReductionFactor(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ !Is\_Crop \\ \frac{StressReductionFactor(t-1)*(daycounter(t)-1) + CropWaterStress(t))}{daycounter(t)}, & \text{otherwise} \end{array}\right. \label{eq:StressReductionFactor}\]
with
\(Is\_Crop = ((YieldMax(t) > 0) \text{&} !Is\_Failure(t))\)
and
\(daycounter(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ !Is\_Crop \\ daycounter(t-1)+1, & \text{otherwise} \end{array}\right.\)

\[Yield(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ !Is\_Crop \\ \max\left( \begin{array}{@{}ll@{}} YieldMax(t) * (1. - Ky(t) * (1. - StressReductionFactor(t))) \\ 0. \end{array}\right), & \text{otherwise} \end{array}\right. \label{eq:Yield}\]

\[YieldFraction(t)=\left\{ \begin{array}{@{}ll@{}} 0, & \text{if}\ !Is\_Crop \\ Yield(t)/YieldMax(t), & \text{otherwise} \end{array}\right. \label{eq:YieldFraction}\]


Atomic model Pond

The Pond model (using extension class DiscreteTimeDyn) estimate the pond volume and water flows (Evaporation, percolation and overflow internal processes and potential refilling/extraction from/for external sources).

The shape of the pond is a reversed truncated pyramid with a rectangular shaped base : pond_figure

Configuring a Pond Model

Dynamics settings

To define the dynamic:

  • library : ASCROM
  • name : Pond

Parameters settings

List and information about all possible parameters (name, type, ismandatory, description with default value).

See documentation of DiscreteTimeDyn to get all available extension parameters (for example time_step)

Parameter name Type Is mandatory? Description              
X0 double [x] Pond surface Length (m)
Y0 double [x] Pond surface Width (m)
Z0 double [x] Pond depth (m)
fx double [x] Shape coefficient for X dimension (must be positive) (m/m)
Evap_coeff double [x] Pond evaporation reduction coefficient (??)
Percol_coeff double [x] Pond percolation coefficient (??)
Init_Pond_Frac double [x] Pond initial volume as a fraction of V0 (-)
Local parameters

The following are computed once from user parameters and then keep a fixed value during the simulation duration

Parameter name Type Description              
fy double Shape coefficient for Y dimension (m/m)
S0 double Pond surface area (m2)
X1 double Pond bottom Length (m)
Y1 double Pond bottom Width (m)
Z1 double Pyramid Apex depth (m)
S1 double Pond bottom area (m2)
V0 double Pond total volume (m3)
V1 double Trunk volume of the truncated pyramid (m3)

\[fy = \frac{Y0 * fx}{X0} \label{eq:fy}\]

\[S0 = X0 * Y0 \label{eq:S0}\]

\[X1 = X0 - fx * Z0 \label{eq:X1}\]

\[Y1 = Y0 - fy * Z0 \label{eq:Y1}\]

\[Z1 = \frac{X0}{fx} = \frac{Y0}{fy} \label{eq:Z1}\]

\[S1 = X1 * Y1 \label{eq:S1}\]

\[V0 = \frac{1}{3} * Z0 * (S0 + S1 + \sqrt{S0 * S1}) \label{eq:V0}\]

\[V1 = \frac{1}{3} * (Z1 - Z0) * (S0 + S1 + \sqrt{S0 * S1}) = \frac{1}{3} * (Z1 - Z0)^3 * fx * fy \label{eq:V1}\]

Input settings

List and information about all possible input ports (name, type, description with units).

for model using extension discrete-time also include sync info

  • ET0 : Reference crop evapotranspiration (We recomend to use values calculated by the Penman Monteith equation as it is done in FAO approach) (mm.d-1) (double) (sync)
  • Rain : daily rain (mm) (double) (sync)
  • RunOff : daily incoming surface runoff volume (m3) (double) (sync)
  • Pond_Irrigation : daily actual irrigation using pond water (m3) (double) (sync)
  • AvailableWater : daily available water for refilling the pond (m3) (double) (sync)

Output settings

List and information about all possible output ports (name, type, description with units).

  • Evaporation : Pond daily surface Evaporation (m3) (double)
  • Percolation : Pond daily bottom Percolation (m3) (double)
  • Pump_water_refill : Pond daily Refill volume (m3) (double)
  • Pond_Overflow : Pond water overflow loss (m3) (double)
  • V : Pond water volume (m3) (double)
  • X : Pond water Length (m) (double)
  • Y : Pond water Width (m) (double)
  • S : Pond water area (m2) (double)
  • Z : Pond water height (m) (double)

Observation settings

List and information about all possible observation ports (name, type, description with units).

Same as Output settings, see above.

Available configurations

List and information about all configuration metadata files

  • ASCROM/Pond : set all parameters with default values

Details

State variables equations

\[Percolation(t) =\min\left( \begin{array}{@{}ll@{}} Z(t-1) * S1 * Percol\_coeff \\ V(t-1) + Rain(t) * S0 / 1000. + RunOff(t) - Pond\_Irrigation(t) \end{array}\right) \label{eq:Percolation}\]

\[Evaporation(t) =\min\left( \begin{array}{@{}ll@{}} ET0(t) * Evap\_coeff * S(t-1) / 1000 \\ V(t-1) - Percolation(t) + Rain(t) * S0 / 1000. + RunOff(t) - Pond\_Irrigation(t) \end{array}\right) \label{eq:Evaporation}\]

\[Pump\_water\_refill(t)=\min\left( \begin{array}{@{}ll@{}} V0 - \min\left( \begin{array}{@{}ll@{}} V0 \\ (V(t-1) + Rain(t) * S0 / 1000. + RunOff(t) - Pond\_Irrigation(t) - Evaporation(t) - Percolation(t)) \end{array}\right) \\ AvailableWater(t) \end{array}\right) \label{eq:Pump_water_refill}\]

\[Pond\_Overflow(t)=\max\left( \begin{array}{@{}ll@{}} 0 \\ (V(t-1) + Rain(t) * S0 / 1000. + RunOff(t) - Pond\_Irrigation(t) - Evaporation(t) - Percolation(t) + AvailableWater(t)) - V0 \end{array}\right) \label{eq:Pond_Overflow}\]

\[V(t) = V(t-1) + Rain(t) * S0 / 1000. + Runoff(t) + AvailableWater(t) - Pond\_Overflow(t) - Pond\_Irrigation(t) - Evaporation(t) - Percolation(t) \label{eq:V}\]
and initialized with : \(V(0) = Init\_Pond\_Frac * V0\)

\[Z(t) = Z0 - Z1 + \sqrt[3]{\frac{3 * (V(t) + V1)}{fx * fy}} \label{eq:Z}\]

\(X(t) = (Z(t) + Z1 - Z0) * fx\)
\(Y(t) = (Z(t) + Z1 - Z0) * fy\)
\(S(t) = X(t) * Y(t) = (Z(t) + Z1 - Z0)^2 * fx * fy\)
\(V(t) = \frac{1}{3} * S(t) * (Z(t) + Z1 - Z0) - V1 = \frac{1}{3} * (Z(t) + Z1 - Z0)^3 * fx * fy - V1\)
\((Z(t) + Z1 - Z0)^3 =\frac{3 * (V(t) + V1)}{fx * fy}\)

\[X(t) = (Z(t) + Z1 - Z0) * fx \label{eq:X}\]

\[Y(t) = (Z(t) + Z1 - Z0) * fy \label{eq:Y}\]

\[S(t) = X(t) * Y(t) = (Z(t) + Z1 - Z0)^2 * fx * fy \label{eq:S}\]


Atomic model IrrigationPriority

The IrrigationPriority model (using extension class DiscreteTimeDyn) estimate the priority for irrigation among the different plots of the farm. It is computed for each crops of each plots. The lowest value of IrrigationPriority is the highest priority.

Configuring a IrrigationPriority Model

Dynamics settings

To define the dynamic:

  • library : ASCROM
  • name : IrrigationPriority

Parameters settings

List and information about all possible parameters (name, type, ismandatory, description with default value).

See documentation of DiscreteTimeDyn to get all available extension parameters (for example time_step)

Parameter name Type Is mandatory? Description              
nbBele int [x] number of plots to manage
a double [x] strategy weight coefficient for plot priority
b double [x] strategy weight coefficient for crop water stress
c double [x] strategy weight coefficient for crop cycle completeness
d double [x] strategy weight coefficient for irrigation technics
RS_strategy int [x] Ranking Stress strategy, {1:favor most stressed ; 2:favor least stressed}
RC_strategy int [x] Ranking Cycle strategy, {1:favor latest in crop cycle ; 2:favor earliest in crop cycle}
BelePriorities set < double > [x] Ranking of the different plots, all values must be different from each others

Input settings

List and information about all possible input ports (name, type, description with units).

for model using extension discrete-time also include sync info

  • CropPriority_i : crop priority related to economic factor and crop cycle length (-) (double) (sync)
  • Days_Without_Irrigation_i : number of consecutive days with no irrigation where it should have for plot i with i ∈ [1, nbBele] (days) (double) (nosync)
  • Lethal_Threshold_Days_Without_Water_i : number of days of water deficit after which the crop is failed for plot i with i ∈ [1, nbBele] (days) (double) (sync)
  • Days_Since_Sowing_i : number of days since sowing for plot i with i ∈ [1, nbBele] (days) (double) (nosync)
  • Crop_Cycle_Duration_i : total expected crop cycle for plot i with i ∈ [1, nbBele] (days) (double) (sync)
  • Irrigation_Technic_Factor_i : irrigation technic factor (from least to most demanding in water) for plot i with i ∈ [1, nbBele] (-) (double) (sync)

Output settings

List and information about all possible output ports (name, type, description with units).

  • IrrigationPriority_i : Priority order (going from 1 to nbBele) of plot i with i ∈ [1, nbBele] (-) [int]
  • R_i : Priority factor of plot i with i ∈ [1, nbBele] (-) [double]
  • RE_i : Ranking Economy of plot i with i ∈ [1, nbBele] (-) [double]
  • RS_i : Ranking Stress of plot i with i ∈ [1, nbBele] (-) [double]
  • RC_i : Ranking Cycle of plot i with i ∈ [1, nbBele] (-) [double]
  • RT_i : Ranking Technics of plot i with i ∈ [1, nbBele] (-) [double]

Observation settings

List and information about all possible observation ports (name, type, description with units).

Same as Output settings, see above.

Available configurations

List and information about all configuration metadata files

  • ASCROM/IrrigationPriority : set all parameters with default values

Details

State variables equations

RE (Ranking Economy) : Plot priority related to economic factors (investments, market prices, …) and crop cycle duration (also related to economic factors as most of the time long cycles are more investment demanding). The idea is to rank all crops used. ∈ [0, 1] \[RE\_i(t)= \frac{CropPriority\_i(t)}{sum_i(CropPriority\_i(t))} \label{eq:RE}\]

RS (Ranking Stress) : factor related to accumulated crop stress (number of days without irrigation). 2 strategies are possible : (i) favor the most stressed crops to avoid failure, or (ii) favor the least stressed crops, because the most stressed ones have disminished their potential yield. ∈ [0, 1] \[ RS\_i(t)=\left\{ \begin{array}{@{}ll@{}} \frac{Lethal\_Threshold\_Days\_Without\_Water\_i(t) - Days\_Without\_Irrigation\_i(t-1)}{Lethal\_Threshold\_Days\_Without\_Water\_i(t)}, & \text{if}\ RS\_strategy=1 \\ \frac{Days\_Without\_Irrigation\_i(t-1)}{Lethal\_Threshold\_Days\_Without\_Water\_i(t)}, & \text{else if}\ RS\_strategy=2 \\ \end{array}\right. \label{eq:RS}\]

RC (Ranking Cycle) : factor related to relative normalised crop cycle realisation. 2 strategies are possible : (i) favor the crops closest to the end of their cycle to ensure harvest, or (ii) favor crops at the begining of their cycle to ensure correct development during early stages. ∈ [0, 1] \[ RC\_i(t)=\left\{ \begin{array}{@{}ll@{}} \frac{Crop\_Cycle\_Duration\_i(t) - Days\_Since\_Sowing\_i(t-1)}{Crop\_Cycle\_Duration\_i(t)}, & \text{if}\ RC\_strategy=1 \\ \frac{Days\_Since\_Sowing\_i(t-1)}{Crop\_Cycle\_Duration\_i(t)}, & \text{else if}\ RC\_strategy=2 \\ \end{array}\right. \label{eq:RC}\]

RT (Ranking Technics) : factor related to the irrigation technic (drip, sprinkler, furrow, …). Rank crops by their irrigation technics from the least demanding in water to the most ones. ∈ [0, 1] \[RT\_i(t)= \frac{Irrigation\_Technic\_Factor\_i(t)}{max_i(Irrigation\_Technic\_Factor\_i(t))} \label{eq:RT}\]

\[R\_i(t)= a * RE\_i(t) + b * RS\_i(t) + c * RC\_i(t) + d * RT\_i(t) \label{eq:R}\]

IrrigationPriority_i(t) : rank of ascending ordered values of R_i(t), for ex-aequo values of R_i(t) the lowest value of BelePriorities is first


Atomic model FarmIrrigationManager

The FarmIrrigationManager model (using extension class DiscreteTimeDyn) estimate ….
All irrigation water is provided for plots on the first day but can be removed from pump or pond during several consecutive days of a water cycle

Configuring a FarmIrrigationManager Model

Dynamics settings

To define the dynamic:

  • library : ASCROM
  • name : FarmIrrigationManager

Parameters settings

List and information about all possible parameters (name, type, ismandatory, description with default value).

See documentation of DiscreteTimeDyn to get all available extension parameters (for example time_step)

Parameter name Type Is mandatory? Description              
DbgLog double [] (default=0) Debug messages verbosity level
nbBele int [x] number of plots to manage
isPondForIrrigation bool [x] define if pond water can be used for irrigation
isOptimize bool [x] define if water from last day of a cycle can be used (see case 2.1)
isRefill bool [x] define if water from pump can be used to refill the pond
V0 double [x] pond total volume (m3)
PlotArea_i double [x] plot area of the plot i with i ∈ [1, nbBele] (m2)

Input settings

List and information about all possible input ports (name, type, description with units).

for model using extension discrete-time also include sync info

  • V : Pond water volume (m3) (double) (nosync)
  • AvailableWater : pump maximum available water (m3.d-1) (double) (sync)
  • PumpMaxVol : maximum water volume reachable by the pump (m3 of water) (double) (sync)
  • IrrigationDemand_i : daily irrigation demand of plot i with i ∈ [1, nbBele] (mm.d-1) (double) (sync)
  • Max_Irrigation_Duration_i : Maximal water cycle duration for plot i with i ∈ [1, nbBele] (days) (double) (sync)
  • IrrigationPriority_i : Priority order (going from 1 to nbBele) of plot i with i ∈ [1, nbBele] (-) [int] (sync)

Output settings

List and information about all possible output ports (name, type, description with units).

  • PondExtraction : daily actual irrigation using pond water (m3) (double)
  • PumpExtraction : daily actual water pumped (m3) (double)
  • PondRefill : water for refilling the pond (m3) (double)
  • WaterCycle_Duration : remaining duration of active water cycle (int) (double)
  • WaterCycle_RemainingAmount : remaining water amount of active water cycle (m3) (double)
  • WaterCycle_CurrentPlot : plot index of active water cycle (int) (double)
  • WaterCycle_CurrentDose : daily pumping water of active water cycle (m3) (double)
  • IrrigationAmount_i : daily actual irrigation for plot i with i ∈ [1, nbBele] (m3) (double)
  • Irrigation_i : daily actual irrigation for plot i with i ∈ [1, nbBele] (mm.d-1) (double)
  • Is_Day_Without_Irrigation_i : detect if day has no irrigation where it should have for plot i with i ∈ [1, nbBele] (bool) (double)
  • Days_Without_Irrigation_i : number of consecutive days with no irrigation where it should have for plot i with i ∈ [1, nbBele] (days) (double)
  • PondExtraction_i : daily actual irrigation using pond water for plot i with i ∈ [1, nbBele] (m3) (double)
  • PumpExtraction_i : daily actual water pumped for plot i with i ∈ [1, nbBele] (m3) (double)

Observation settings

List and information about all possible observation ports (name, type, description with units).

Same as Output settings, see above.

Available configurations

List and information about all configuration metadata files

  • ASCROM/FarmIrrigationManager : set all parameters with default values

Details

State variables equations

  • Some state variables use different equations depending on the following cases and sub-cases :
    1. Current day is not in an active water cycle
      1.1. No plot request any water
      1.2. At least one plot request water
    2. Current day is in an active water cycle

Local variables defined and used in the following part are initialized as :

\[ pond\_AvailableIrrigationWater=\left\{ \begin{array}{@{}ll@{}} V(-1), & \text{if}\ isPondForIrrigation(t) \\ 0, & \text{otherwise}\ \\ \end{array}\right. \label{eq:pond_AvailableIrrigationWater_1_2_init}\]

\[pump\_AvailableIrrigationWater = AvailableWater(t) \label{eq:pump_AvailableIrrigationWater_1_2_init}\]

\[total\_AvailableIrrigationWater = pond\_AvailableIrrigationWater + pump\_AvailableIrrigationWater \label{eq:total_AvailableIrrigationWater_1_2_init}\]

\[pond\_extraction = 0 \label{eq:pond_extraction_1_2_init}\]

\[pump\_extraction = 0 \label{eq:pump_extraction_1_2_init}\]

\[cycle\_max\_amount = PumpMaxVol(t) + pond\_AvailableIrrigationWater \label{eq:cycle_max_amount_1_2_init}\]

For each plot the local variables defined and used in the following part are initialized as :

\[plot\_irrig\_demand\_i = IrrigationDemand\_i(t) * PlotArea\_i / 1000. \label{eq:plot_irrig_demand_1_2_init}\] ∀ i ∈ [1, nbBele]

\[plot\_cycle\_duration\_i = ceil(\frac{plot\_irrig\_demand\_i - total\_AvailableIrrigationWater}{AvailableWater(t)}) \label{eq:plot_cycle_duration_1_2_init}\] ∀ i ∈ [1, nbBele]

Case 1.1 : Current day is not in an active water cycle and No plot request any water

Case detection : if \((WaterCycle\_Duration(t-1) <= 0.)\) & \((sum_i(IrrigationDemand\_i(t))==0)\)

Local variables equations :

\[pond\_extraction = 0 \label{eq:PondExtraction_1_1}\]

\[pump\_extraction = 0 \label{eq:PumpExtraction_1_1}\]

State Variables equations :

\[WaterCycle\_Duration(t) = 0 \label{eq:WaterCycle_Duration_1_1}\]

\[WaterCycle\_RemainingAmount(t) = 0 \label{eq:WaterCycle_RemainingAmount_1_1}\]

\[WaterCycle\_CurrentPlot(t) = -1 \label{eq:WaterCycle_CurrentPlot_1_1}\]

\[WaterCycle\_CurrentDose(t) = 0 \label{eq:WaterCycle_CurrentDose_1_1}\]

\[IrrigationAmount\_i(t) = 0 \label{eq:IrrigationAmount_1_1}\] ∀ i ∈ [1, nbBele]

\[Is\_Day\_Without\_Irrigation\_i(t) = 0 \label{eq:Is_Day_Without_Irrigation_1_1}\] ∀ i ∈ [1, nbBele]

Case 1.2 : Current day is not in an active water cycle and at least one plot request water

Case detection : if \((WaterCycle\_Duration(t-1) <= 0.)\) & \((sum_i(IrrigationDemand\_i(t))>0)\)

Sequential loop over all plots requesting water using increasing values of IrrigationPriority_i(t), for each plot 3 cases are possible :

1.2.1. All the requested water can be provided in a single day using the pump and pond.
1.2.2 All the requested water can be provided during a water cycle.
1.2.3 Not all the requested water can be provided neither in a single day nor during a water cycle.

Case 1.2.1 All the requested water can be provided in a single day using the pump and pond.

Case detection : if \((WaterCycle\_Duration(t) <= 0.)\) & \((plot\_irrig\_demand\_i <= total\_AvailableIrrigationWater)\)

Local variables equations :

\[pond\_AvailableIrrigationWater = pond\_AvailableIrrigationWater - pond\_flow \label{eq:pond_AvailableIrrigationWater_1_2_1}\]
with
\(pond\_flow =\min\left( \begin{array}{@{}ll@{}} pond\_AvailableIrrigationWater \\ plot\_irrig\_demand\_i \end{array}\right)\)

\[pump\_AvailableIrrigationWater = pump\_AvailableIrrigationWater - pump\_flow \label{eq:pump_AvailableIrrigationWater_1_2_1}\]
with
\(pump\_flow =plot\_irrig\_demand\_i - \min\left( \begin{array}{@{}ll@{}} pond\_AvailableIrrigationWater \\ plot\_irrig\_demand\_i \end{array}\right)\)

\[pond\_extraction = pond\_extraction + pond\_flow \label{eq:pond_extraction_1_2_1}\]

\[pump\_extraction = pump\_extraction + pump\_flow \label{eq:pump_extraction_1_2_1}\]

\[total\_AvailableIrrigationWater = pond\_AvailableIrrigationWater + pump\_AvailableIrrigationWater \label{eq:total_AvailableIrrigationWater_1_2_1}\]

\[cycle\_max\_amount = PumpMaxVol(t) - pump\_extraction + pond\_AvailableIrrigationWater \label{eq:cycle_max_amount_1_2_1}\]

State Variables equations :

\[IrrigationAmount\_i(t) = plot\_irrig\_demand\_i \label{eq:IrrigationAmount_1_2_1}\]

\[Is\_Day\_Without\_Irrigation\_i(t) = 0 \label{eq:Is_Day_Without_Irrigation_1_2_1}\]

Case 1.2.2 All the requested water can be provided during a water cycle.

Case detection : if \(( WaterCycle\_Duration(t)==0. )\) & \(( plot\_irrig\_demand\_i <= cycle\_max\_amount )\) & \(( plot\_cycle\_duration\_i <= Max\_Irrigation\_Duration\_i(t) )\)

Local variables equations :

\[pond\_extraction = pond\_extraction + pond\_AvailableIrrigationWater \label{eq:pond_extraction_1_2_2}\]

\[pump\_extraction = pump\_extraction + pump\_AvailableIrrigationWater \label{eq:pump_extraction_1_2_2}\]

\[pond\_AvailableIrrigationWater = 0 \label{eq:pond_AvailableIrrigationWater_1_2_2}\]

\[pump\_AvailableIrrigationWater = 0 \label{eq:pump_AvailableIrrigationWater_1_2_2}\]

\[total\_AvailableIrrigationWater = pond\_AvailableIrrigationWater + pump\_AvailableIrrigationWater \label{eq:total_AvailableIrrigationWater_1_2_2}\]

\[cycle\_max\_amount = PumpMaxVol(t) - pump\_extraction + pond\_AvailableIrrigationWater - (plot\_irrig\_demand\_i - total\_AvailableIrrigationWater) \label{eq:cycle_max_amount_1_2_2}\]

State Variables equations :

\[WaterCycle\_Duration(t) = plot\_cycle\_duration\_i \label{eq:WaterCycle_Duration_1_2_2}\]

\[WaterCycle\_RemainingAmount(t) = plot\_irrig\_demand\_i - total\_AvailableIrrigationWater \label{eq:WaterCycle_RemainingAmount_1_2_2}\]

\[WaterCycle\_CurrentPlot(t) = i \label{eq:WaterCycle_CurrentPlot_1_2_2}\]

\[WaterCycle\_CurrentDose(t) = AvailableWater(t) \label{eq:WaterCycle_CurrentDose_1_2_2}\]

\[IrrigationAmount\_i(t) = plot\_irrig\_demand\_i \label{eq:IrrigationAmount_1_2_2}\]

\[Is\_Day\_Without\_Irrigation\_i(t) = 0 \label{eq:Is_Day_Without_Irrigation_1_2_2}\]

Case 1.2.3 Not all the requested water can be provided neither in a single day nor during a water cycle.

Case detection : otherwise

\[IrrigationAmount\_i(t) = 0 \label{eq:IrrigationAmount_1_2_3}\]

\[Is\_Day\_Without\_Irrigation\_i(t) = 1 \label{eq:Is_Day_Without_Irrigation_1_2_3}\]

Case 2 : Current day is in an active water cycle

Case detection : if \((WaterCycle\_Duration(t-1) > 0.)\)

\[WaterCycle\_Duration(t) = WaterCycle\_Duration(t-1) - 1 \label{eq:WaterCycle_Duration_2}\]

\[WaterCycle\_RemainingAmount(t)=\max\left( \begin{array}{@{}ll@{}} 0 \\ WaterCycle\_RemainingAmount(t-1) - WaterCycle\_CurrentDose(t) \end{array}\right) \label{eq:WaterCycle_RemainingAmount_2}\nonumber\]

\[ WaterCycle\_CurrentPlot(t)=\left\{ \begin{array}{@{}ll@{}} WaterCycle\_CurrentPlot(-1), & \text{if}\ WaterCycle\_Duration(t)!=0 \\ -1, & \text{otherwise}\ \\ \end{array}\right. \label{eq:WaterCycle_CurrentPlot_2}\]

\[ WaterCycle\_CurrentDose(t)=\left\{ \begin{array}{@{}ll@{}} WaterCycle\_CurrentDose(-1), & \text{if}\ WaterCycle\_Duration(t)!=0 \\ 0, & \text{otherwise}\ \\ \end{array}\right. \label{eq:WaterCycle_CurrentDose_2}\]

\[pond\_extraction = 0 \label{eq:PondExtraction_2}\]

\[pump\_extraction=\min\left( \begin{array}{@{}ll@{}} WaterCycle\_CurrentDose(t) \\ WaterCycle\_RemainingAmount(t-1) \end{array}\right) \label{eq:PumpExtraction_2}\nonumber\]

\[IrrigationAmount\_i(t) = 0 \label{eq:IrrigationAmount_2}\] ∀ i ∈ [1, nbBele]

\[ Is\_Day\_Without\_Irrigation\_i(t)=1 \label{eq:Is_Day_Without_Irrigation_2}\] ∀ i ∈ [1, nbBele]

Case 2.1 : Current day is the last day of an active water cycle

If isOptimize option is activated.

In the case where it is the last day of an active water cycle we subsequently try to do 1 day irrigations (similar to case 1.2.1), using the remaining water and using pump volumes from the start of the water cycle.

Sequential loop over all plots requesting water using increasing values of IrrigationPriority_i(t).

Local variables defined and used in the following part are initialized as :

\[ pond\_AvailableIrrigationWater=\left\{ \begin{array}{@{}ll@{}} V(-1), & \text{if}\ isPondForIrrigation(t) \\ 0, & \text{otherwise}\ \\ \end{array}\right. \label{eq:pond_AvailableIrrigationWater_2_1_init}\]

\[pump\_AvailableIrrigationWater = WaterCycle\_CurrentDose(t-1) - WaterCycle\_RemainingAmount(t-1) \label{eq:pump_AvailableIrrigationWater_2_1_init}\]

\[total\_AvailableIrrigationWater = pond\_AvailableIrrigationWater + pump\_AvailableIrrigationWater \label{eq:total_AvailableIrrigationWater_2_1_init}\]

\[pond\_extraction = PondExtraction(t) \label{eq:pond_extraction_2_1_init}\]

\[pump\_extraction = PumpExtraction(t) \label{eq:pump_extraction_2_1_init}\]

For each plot the local variables defined and used in the following part are initialized as :

\[plot\_irrig\_demand\_i = IrrigationDemand\_i(t) * PlotArea\_i / 1000. \label{eq:plot_irrig_demand_2_1}\] ∀ i ∈ [1, nbBele]

if \((plot\_irrig\_demand\_i <= total\_AvailableIrrigationWater)\)

Local variables equations :

\[pond\_AvailableIrrigationWater = pond\_AvailableIrrigationWater - pond\_flow \label{eq:pond_AvailableIrrigationWater_2_1}\]
with
\(pond\_flow =\min\left( \begin{array}{@{}ll@{}} pond\_AvailableIrrigationWater \\ plot\_irrig\_demand\_i \end{array}\right)\)

\[pump\_AvailableIrrigationWater = pump\_AvailableIrrigationWater - pump\_flow \label{eq:pump_AvailableIrrigationWater_2_1}\]
with
\(pump\_flow =plot\_irrig\_demand\_i - \min\left( \begin{array}{@{}ll@{}} pond\_AvailableIrrigationWater \\ plot\_irrig\_demand\_i \end{array}\right)\)

\[pond\_extraction = pond\_extraction + pond\_flow \label{eq:pond_extraction_2_1}\]

\[pump\_extraction = pump\_extraction + pump\_flow \label{eq:pump_extraction_2_1}\]

\[total\_AvailableIrrigationWater = pond\_AvailableIrrigationWater + pump\_AvailableIrrigationWater \label{eq:total_AvailableIrrigationWater_2_1}\]
State Variables equations :

\[IrrigationAmount\_i(t) = plot\_irrig\_demand\_i \label{eq:IrrigationAmount_2_1}\]

\[Is\_Day\_Without\_Irrigation\_i(t) = 0 \label{eq:Is_Day_Without_Irrigation_2_1}\]

  • State variable that use a single equation (computed at the end of daily loop) :

Irrigation_i with i ∈ [1, nbBele] (mm.d-1) unit conversion from (m3) \[Irrigation\_i(t)= \frac{IrrigationAmount\_i(t) * 1000.}{PlotArea\_i} \label{eq:Irrigation_i}\] ∀ i ∈ [1, nbBele]

Days_Without_Irrigation_i with i ∈ [1, nbBele] (day) counter of consecutive days where Is_Day_Without_Irrigation_i \[ Days\_Without\_Irrigation\_i(t)=\left\{ \begin{array}{@{}ll@{}} Days\_Without\_Irrigation\_i(t-1) + 1, & \text{if}\ Is\_Day\_Without\_Irrigation\_i(t)=1 \\ 0, & \text{otherwise}\ \\ \end{array}\right. \label{eq:Days_Without_Irrigation}\] ∀ i ∈ [1, nbBele]

\[PondRefill(t)=\left\{ \begin{array}{@{}ll@{}} \min\left( \begin{array}{@{}ll@{}} pump\_AvailableIrrigationWater \\ V0 - V(t-1) \end{array}\right), & \text{if}\ isRefill \\ 0, & \text{otherwise}\ \\ \end{array}\right. \label{eq:PondRefill}\] along with \(pump\_extraction = pump\_extraction + PondRefill(t)\)

\[PondExtraction(t)=pond\_extraction \label{eq:PondExtraction}\]

\[PumpExtraction(t)=pump\_extraction \label{eq:PumpExtraction}\]


Annexes

Tables

Table 1: Kc (extract of FAO) Kc

Table 2: fw fw

Table 3: fc fc

Table4: REW REW

Table 5: Crop stage duration, by climate Stage duration